171 research outputs found

    Endomicroscopic and transcriptomic analysis of impaired barrier function and malabsorption in environmental enteropathy

    Get PDF
    Introduction: Environmental enteropathy (EE) is associated with growth failure, micronutrient malabsorption and impaired responses to oral vaccines. We set out to define cellular mechanisms of impaired barrier function in EE and explore protective mechanisms. Methods: We studied 49 adults with environmental enteropathy in Lusaka, Zambia using confocal laser endomicroscopy (CLE); histology, immunohistochemistry and mRNA sequencing of small intestinal biopsies; and correlated these with plasma lipopolysaccharide (LPS) and a zinc uptake test. Results: CLE images (median 134 for each study) showed virtually ubiquitous small intestinal damage. Epithelial defects, imaged by histology and claudin 4 immunostaining, were predominantly seen at the tips of villi and corresponded with leakage imaged in vivo by CLE. In multivariate analysis, circulating log-transformed LPS was correlated with cell shedding events (β = 0.83; P = 0.035) and with serum glucagon-like peptide-2 (β = -0.13; P = 0.007). Zinc uptake from a test dose of 25mg was attenuated in 30/47 (64%) individuals and in multivariate analysis was reduced by HIV, but positively correlated with GLP-2 (β = 2.72; P = 0.03). There was a U-shaped relationship between circulating LPS and villus surface area. Transcriptomic analysis identified 23 differentially expressed genes in severe enteropathy, including protective peptides and proteins. Conclusions: Confocal endomicroscopy, claudin 4 immunostaining and histology identify epithelial defects which are probably sites of bacterial translocation, in the presence of which increased epithelial surface area increases the burden of translocation. GLP 2 and other protective peptides may play an important role in mucosal protection in EE

    Software Citation Implementation Challenges

    Get PDF
    The main output of the FORCE11 Software Citation working group (https://www.force11.org/group/software-citation-working-group) was a paper on software citation principles (https://doi.org/10.7717/peerj-cs.86) published in September 2016. This paper laid out a set of six high-level principles for software citation (importance, credit and attribution, unique identification, persistence, accessibility, and specificity) and discussed how they could be used to implement software citation in the scholarly community. In a series of talks and other activities, we have promoted software citation using these increasingly accepted principles. At the time the initial paper was published, we also provided guidance and examples on how to make software citable, though we now realize there are unresolved problems with that guidance. The purpose of this document is to provide an explanation of current issues impacting scholarly attribution of research software, organize updated implementation guidance, and identify where best practices and solutions are still needed

    Convergent genes shape budding yeast pericentromeres

    Get PDF
    The three-dimensional architecture of the genome governs its maintenance, expression and transmission. The cohesin protein complex organizes the genome by topologically linking distant loci, and is highly enriched in specialized chromosomal domains surrounding centromeres, called pericentromeres. Here we report the three-dimensional structure of pericentromeres in budding yeast (Saccharomyces cerevisiae) and establish the relationship between genome organization and function. We find that convergent genes mark pericentromere borders and, together with core centromeres, define their structure and function by positioning cohesin. Centromeres load cohesin, and convergent genes at pericentromere borders trap it. Each side of the pericentromere is organized into a looped conformation, with border convergent genes at the base. Microtubule attachment extends a single pericentromere loop, size-limited by convergent genes at its borders. Reorienting genes at borders into a tandem configuration repositions cohesin, enlarges the pericentromere and impairs chromosome biorientation during mitosis. Thus, the linear arrangement of transcriptional units together with targeted cohesin loading shapes pericentromeres into a structure that is competent for chromosome segregation. Our results reveal the architecture of the chromosomal region within which kinetochores are embedded, as well as the restructuring caused by microtubule attachment. Furthermore, we establish a direct, causal relationship between the three-dimensional genome organization of a specific chromosomal domain and cellular function

    Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα

    Get PDF
    © 2012 Samejima et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication dateMitotic chromosome formation involves a relatively minor condensation of the chromatin volume coupled with a dramatic reorganization into the characteristic "X" shape. Here we report results of a detailed morphological analysis, which revealed that chromokinesin KIF4 cooperated in a parallel pathway with condensin complexes to promote the lateral compaction of chromatid arms. In this analysis, KIF4 and condensin were mutually dependent for their dynamic localization on the chromatid axes. Depletion of either caused sister chromatids to expand and compromised the "intrinsic structure" of the chromosomes (defined in an in vitro assay), with loss of condensin showing stronger effects. Simultaneous depletion of KIF4 and condensin caused complete loss of chromosome morphology. In these experiments, topoisomerase IIα contributed to shaping mitotic chromosomes by promoting the shortening of the chromatid axes and apparently acting in opposition to the actions of KIF4 and condensins. These three proteins are major determinants in shaping the characteristic mitotic chromosome morphology

    Anvers-Hugo Trough palaeo-ice stream, Antarctic Peninsula: geomorphological evidence for the role of subglacial water in facilitating ice stream flow

    Get PDF
    We will present new multibeam bathymetry data that make the Anvers-Hugo Trough west of the Antarctic Peninsula one of the most completely surveyed palaeo-ice stream pathways in Antarctica. We interpret landforms revealed by these data as indicating that subglacial water availability played an important role in facilitating ice stream flow in the trough during late Quaternary glacial periods. Specifically, we observe a set of northward-shoaling valleys that are eroded into the upstream edge of a sedimentary basin, extend northwards from a zone containing landforms typical of erosion by subglacial water flow, and coincide spatially with the onset of mega-scale glacial lineations. Water was likely supplied to the ice stream bed episodically as a result of outbursts from a subglacial lake previously hypothesized to have been located in the Palmer Deep basin on the inner continental shelf. In a palaeo-ice stream confluence area, close juxtaposition of mega-scale glacial lineations with landforms that are characteristic of slow, dry-based ice flow, suggests that water availability was also an important control on the lateral extent of these palaeo-ice streams. These interpretations are consistent with the hypothesis that subglacial lakes or areas of elevated geothermal heat flux play a critical role in the onset of many large ice streams. The interpretations also have implications for the dynamic behaviour of the Anvers-Hugo Trough palaeo-ice stream and, potentially, of several other Antarctic palaeo-ice streams. Keywords: multibeam bathymetry, ice stream, subglacial water, landfor

    Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989-2012: a matched case-control study

    Get PDF
    Background:  Microbiome dysbiosis predisposes to colorectal cancer (CRC), but a population-based study of antibiotic exposure and risk patterns is lacking. In this study, oral antibiotic use on CRC incidence was assessed. Methods:  A matched case-control study (incident CRC cases and up to 5 matched controls) was performed using the Clinical Practice Research Datalink (CPRD; January 1, 1989 to December 31, 2012). Conditional logistic regression was used to assess CRC association with oral antibiotic use, adjusting for potential confounders. Antibiotic exposure in categorical and continuous terms (spline) was investigated for pattern of risk, stratified by specific tumor location. Findings:  28,980 CRC cases and 137,077 controls were identified. Oral antibiotic use was associated with CRC risk, but effects differed by anatomic location. Antibiotic use was found to be associated with excess risk of colon cancer in a dose-dependent fashion (Ptrend60 days (Adjusted Odds Ratio [AOR], 0·85, 95% CI 0·79–0·93) as compared with no antibiotic exposure. Penicillins were associated with increased risk of colon cancer (AOR,1·09, [1·05-1·13]) whereas tetracyclines were associated with risk reduction for rectal cancer (AOR, 0·90, [0·84-0·97]). Significant interactions were detected between antibiotic use and tumor location (colon vs rectum, Pinteraction ten years before diagnosis (AOR, 1·17, [1·06-1·31]). InterpretationOral antibiotic use is associated with an increased risk of colon cancer risk but a reduced risk for rectal cancer. This effect heterogeneity may suggest differences in gut microbiota and carcinogenesis mechanisms along the lower intestine tract

    The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments.

    Get PDF
    BACKGROUND: No treatments are currently available that slow, stop, or reverse disease progression in established multiple sclerosis (MS). The Mesenchymal Stem Cells in Multiple Sclerosis (MSCIMS) trial tests the safety and feasibility of treatment with a candidate cell-based therapy, and will inform the wider challenge of designing early phase clinical trials to evaluate putative neuroprotective therapies in progressive MS. Illustrated by the MSCIMS trial protocol, we describe a novel methodology based on detailed assessment of the anterior visual pathway as a model of wider disease processes--the "sentinel lesion approach". METHODS/DESIGN: MSCIMS is a phase IIA study of autologous mesenchymal stem cells (MSCs) in secondary progressive MS. A pre-test : post-test design is used with healthy controls providing normative data for inter-session variability. Complementary eligibility criteria and outcomes are used to select participants with disease affecting the anterior visual pathway. RESULTS: Ten participants with MS and eight healthy controls were recruited between October 2008 and March 2009. Mesenchymal stem cells were successfully isolated, expanded and characterised in vitro for all participants in the treatment arm. CONCLUSIONS: In addition to determining the safety and feasibility of the intervention and informing design of future studies to address efficacy, MSCIMS adopts a novel strategy for testing neuroprotective agents in MS--the sentinel lesion approach--serving as proof of principle for its future wider applicability. TRIAL REGISTRATION: ClinicalTrials.gov (NCT00395200).RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore